Stochastic Dual Coordinate Ascent with Adaptive Probabilities: Supplementary material
ثبت نشده
چکیده
Proofs We shall need the following inequality.
منابع مشابه
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
This paper introduces AdaSDCA: an adaptive variant of stochastic dual coordinate ascent (SDCA) for solving the regularized empirical risk minimization problems. Our modification consists in allowing the method adaptively change the probability distribution over the dual variables throughout the iterative process. AdaSDCA achieves provably better complexity bound than SDCA with the best fixed pr...
متن کاملTrading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent
We present and study a distributed optimization algorithm by employing a stochastic dual coordinate ascent method. Stochastic dual coordinate ascent methods enjoy strong theoretical guarantees and often have better performances than stochastic gradient descent methods in optimizing regularized loss minimization problems. It still lacks of efforts in studying them in a distributed framework. We ...
متن کاملAdaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields
This work investigates training Conditional Random Fields (CRF) by Stochastic Dual Coordinate Ascent (SDCA). SDCA enjoys a linear convergence rate and a strong empirical performance for independent classification problems. However, it has never been used to train CRF. Yet it benefits from an exact line search with a single marginalization oracle call, unlike previous approaches. In this paper, ...
متن کاملSupplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent
For the proof of Theorem 1, we first prove the following Lemma. Lemma 1. Assume that φ * i (z) is γ-strongly convex function (where γ can be zero). Then for any t > 0 and s ∈ [0, 1], we have
متن کاملDistributed Asynchronous Dual-Free Stochastic Dual Coordinate Ascent
In this paper, we propose a new Distributed Asynchronous Dual-Free Coordinate Ascent method (dis-dfSDCA), and prove that it has linear convergence rate in convex case. Stochastic Dual Coordinate Ascent (SDCA) is a popular method in solving regularized convex loss minimization problems. Dual-Free Stochastic Dual Coordinate Ascent (dfSDCA) method is a variation of SDCA, and can be applied to a mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015